Our website uses cookies to enhance and personalize your experience and to display advertisements (if any). Our website may also include third party cookies such as Google Adsense, Google Analytics, Youtube. By using the website, you consent to the use of cookies. We have updated our Privacy Policy. Please click the button to view our Privacy Policy.

Environmental implications of advancing deep-sea mining technology

https://media.npr.org/assets/img/2023/08/08/tmc_061022_mavic3_0167-1024x683_wide-c7c709176fdea03a5aaf2494b14e52341d6e433a.jpg?s=1100&c=50&f=jpeg

The vast ocean depths have long fascinated us due to their unexplored resources, and with technological advancements, the aspiration of mining the deep sea is becoming increasingly feasible. Polymetallic nodules, which are tiny metal-rich stones dispersed along the seabed, are pivotal to this expanding sector. These nodules hold precious elements including manganese, nickel, and cobalt, crucial for renewable energy systems and sought-after items like batteries. However, as the techniques for extracting these resources progress, debates about their environmental consequences remain a topic of contention among specialists.

A notable technological advancement was made by Impossible Metals, a company that recently trialed their autonomous mining robot in shallow waters. This robot, featuring camera systems and AI-driven algorithms, showcased its capability to spot and steer clear of marine organisms while gathering nodules. Created to cause minimal disruption, the robot’s claw-like appendages carefully extract rocks from the ocean floor with limited sediment emission. Oliver Gunasekara, the CEO of Impossible Metals, asserts that the system achieves 95% accuracy in identifying lifeforms as tiny as 1 millimeter, with ongoing efforts to enhance the technology to minimize sediment disturbances during its activities.

In spite of these technological progressions, the issue of deep-sea mining remains highly controversial. Environmental organizations, oceanic scientists, and some governmental officials contend that the possible harm to ecosystems significantly surpasses the advantages gained. The discussion is intensifying as businesses gear up to expand their activities and in anticipation of forthcoming international regulations on deep-sea mining expected this year.

The ecological implications of extracting resources from the ocean bed

The allure of deep-sea mining is rooted in its potential to obtain essential materials needed for the energy shift. Metals such as cobalt and nickel are crucial for electric cars and renewable energy storage, with advocates suggesting that accessing ocean floor resources could lessen reliance on environmentally harmful land-based mining. Nevertheless, the deep sea represents one of the most unexplored and least comprehended ecosystems on the planet, raising significant concerns over the possible repercussions of mining activities.

The appeal of deep-sea mining lies in its promise to extract critical materials for the energy transition. Metals like cobalt and nickel are vital for electric vehicles and renewable energy storage, and proponents argue that tapping into seabed resources could reduce dependency on environmentally damaging land-based mining. However, the deep sea is one of the least explored and least understood ecosystems on Earth, making the potential consequences of mining a major concern.

Historical data also presents warnings. In 1979, trial deep-sea mining gear created marks on the Pacific ocean floor that are still apparent today. Scientists discovered that the wildlife in these affected zones has not completely rebounded, even after over forty years. The prolonged impacts of sediment plumes, acoustic disturbances, and possible chemical pollutants contribute additional uncertainties regarding the ecological outcomes.

John Childs, a professor at Lancaster University, shares these apprehensions, noting that the leading opinion among scientists is to refrain from disrupting the deep sea until its ecosystems are more comprehensively studied. “If you’re unaware of what lies beneath, the most prudent action is to avoid interference,” he remarks.

The daring steps and tech breakthroughs of the industry

In spite of the opposition, deep-sea mining companies are progressing, motivated by the increasing global need for rare metals. Impossible Metals is among the organizations aiming to spearhead this movement by integrating robotics with environmental concerns. The company is presently developing a larger iteration of its robotic system, encased in a 20-foot shipping container, with intentions for commercial-scale activities. This updated model will be equipped with 12 robotic arms designed to gather nodules and transfer them to surface vessels, avoiding conventional tethered systems that produce excessive noise pollution.

Despite the backlash, deep-sea mining firms are forging ahead, driven by the growing global demand for rare metals. Impossible Metals is one of several companies hoping to lead the charge by combining robotics and environmental considerations. The company is currently building a larger version of its robotic system, housed in a 20-foot shipping container, with plans for commercial-scale operations. This new model will feature 12 robotic arms capable of harvesting nodules and transferring them to surface ships, bypassing traditional tethered systems that generate excessive noise pollution.

Gunasekara argues that deep-sea mining could actually help reduce the environmental costs of land-based mining. “Anyone opposing deep-sea mining is essentially advocating for more destructive mining on land,” he says. However, opponents counter that the environmental consequences of disturbing untouched seabed ecosystems may create new problems rather than solving existing ones.

Barron dismisses the criticism of deep-sea mining as mere “posturing” and anticipates that the industry will advance under the Trump administration’s second term, which he asserts is more favorable towards resource extraction. His company intends to apply to the International Seabed Authority (ISA) later this year, with hopes to start operations once the regulations are completed.

Reconciling technological advancement with ecological stewardship

Balancing innovation with environmental responsibility

The difficulties go beyond environmental issues. The instability of international metal markets brings into question the economic feasibility of deep-sea mining. Lea Reitmeier, a researcher at the London School of Economics, highlights that the availability of essential metals such as nickel and cobalt might not be as scarce as some mining companies claim. “A thorough examination of supply shortages sometimes undermines the rationale for deep-sea mining,” she remarks.

Moreover, the cultural importance of the ocean to Indigenous communities must not be ignored. Deep-sea mining has the potential to disrupt these traditions, posing ethical questions regarding the use of common global resources.

A debated outlook for ocean floor mining

As discussions persist, one aspect is undeniable: the creation of international regulations will be pivotal in shaping the future of deep-sea mining. The ISA, responsible for regulating seabed resource extraction, is anticipated to unveil its initial set of rules this year. These guidelines will likely influence how companies conduct operations and manage environmental impacts.

As the debate continues, one thing is clear: the development of international regulations will play a crucial role in determining the future of deep-sea mining. The ISA, the authority tasked with overseeing seabed resource extraction, is expected to release its first set of rules this year. These regulations will likely shape how companies operate and how environmental impacts are managed.

For now, no commercial deep-sea mining operations are underway, but the technology and interest are advancing rapidly. Companies like Impossible Metals and The Metals Company remain determined to lead the charge, touting innovations that they claim will minimize harm while meeting global demand for critical materials. However, the skepticism from environmental groups, researchers, and some policymakers suggests that significant hurdles remain.

As the world grapples with the dual challenges of transitioning to clean energy and preserving natural ecosystems, the question of whether deep-sea mining is a solution—or a new problem—will be central to the conversation. Whether these technological advancements can coexist with environmental stewardship remains to be seen, but the stakes could not be higher for the planet’s most mysterious frontier.

By Ava Martinez

You may also like