The Metropolitan Transportation Authority (MTA) in New York City has partnered with Google for a groundbreaking pilot program focused on enhancing the reliability of its old subway network. Utilizing Google’s mobile technology, the effort aims to detect and resolve rail problems before they cause service interruptions. Named “TrackInspect,” the project signifies a considerable advancement in applying artificial intelligence and contemporary technology to public transportation.
La iniciativa piloto, que inició en septiembre de 2024 y finalizó en enero de 2025, consistió en equipar algunos vagones del metro con teléfonos Google Pixel. Estos dispositivos se encargaron de recolectar datos de audio y vibración para identificar posibles fallas en las vías. Luego, la información fue evaluada a través de los sistemas de inteligencia artificial en la nube de Google, los cuales señalaban las zonas que necesitaban una revisión más detallada por parte del personal de la MTA.
“By spotting initial indicators of track deterioration, we not only cut down on maintenance expenses but also lessen inconveniences for passengers,” stated Demetrius Crichlow, president of New York City Transit, in an announcement made public in late February.
The collaboration between the MTA and Google forms part of a wider initiative to update New York’s 120-year-old subway network, which still struggles with issues tied to its outdated infrastructure and regular delays. Although the pilot program showed encouraging outcomes, uncertainties persist regarding the potential expansion of TrackInspect due to the MTA’s budgetary limitations.
Addressing delays using AI and smartphones
Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.
The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.
Los teléfonos inteligentes se colocaron estratégicamente tanto dentro como debajo de los vagones del metro. Los dispositivos externos estaban equipados con micrófonos para captar sonidos y vibraciones, mientras que los internos tenían los micrófonos desactivados para evitar grabar conversaciones de los pasajeros. En cambio, estos dispositivos se concentraban únicamente en las vibraciones para identificar anomalías en las vías.
The smartphones were strategically placed both inside and underneath the subway cars. While the external devices were equipped with microphones to capture audio and vibrations, the internal phones had their microphones disabled to ensure passenger conversations were not recorded. Instead, these devices focused solely on vibrations to detect irregularities in the tracks.
La línea de tren A, seleccionada para el piloto, presentó un entorno de prueba variado con vías tanto subterráneas como elevadas. Además, incluyó segmentos de infraestructura recientemente construida, ofreciendo un punto de referencia para comparaciones. Aunque no todos los retrasos en la línea A se deben a problemas mecánicos, los datos recopilados durante el programa piloto podrían contribuir a resolver problemas recurrentes y mejorar el servicio en general.
Encouraging outcomes, yet challenges persist
The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.
El programa también incorporó una herramienta impulsada por inteligencia artificial basada en el modelo Gemini de Google, que permitía a los inspectores hacer preguntas sobre protocolos de mantenimiento e historial de reparaciones. Esta inteligencia artificial conversacional ofrecía a los inspectores información clara y útil, lo que facilitaba aún más el proceso de mantenimiento.
Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.
Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.
An increasing trend in transit advancement
A growing trend in transit innovation
Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.
La red de metro de la MTA es la más grande de Estados Unidos, brindando servicio las 24 horas en muchas de sus líneas. Este funcionamiento continuo añade otra capa de complejidad a los esfuerzos de mantenimiento, ya que las reparaciones y mejoras a menudo deben realizarse junto al servicio activo. Con el uso de tecnología de inteligencia artificial y teléfonos inteligentes, el programa TrackInspect podría ayudar a la MTA a enfrentar estos desafíos de manera más eficiente.
Future Prospects
Looking ahead
Currently, the pilot serves as an encouraging move toward updating the MTA’s operations and tackling the difficulties of an outdated transit system. By merging the knowledge of tech firms like Google with the expertise of transit professionals, New York City could potentially provide a more dependable subway experience for its millions of daily passengers.
For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.
As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.
The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.